National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Analysis of dynamical behaviour of slender structures and design of device to reduce vibration
Hanzlík, Tomáš ; Krejsa,, Martin (referee) ; prof. Ing. Alois Materna, CSc., MBA (referee) ; Salajka, Vlastislav (advisor)
Thesis deals with the modeling of pedestrian excitation of structures and obtaining the corresponding dynamic response of the structure. The trend of modern slender structures places more emphasis on the accuracy of modeling pedestrian dynamic excitation, which is difficult because of the intelligent behavior of pedestrians and the biological nature of the modeled pedestrian. First part of the thesis deals with traditional models of pedestrian excitation, based on application of pedestrian ground force to the model of construction. Models are explored on a model of slender footbridge for many different excitation variants in order to explore the specifics of the force excitation application and the structure response calculation. In second part of the thesis biomechanical pedestrian models are developed, including inertial forces, to calculate the pedestrian interaction with the structure. Parametric studies carried out on simplified structural models research the influence of design parameters of biomechanical models on dynamic response. The aim is to obtain a more accurate model of the pedestrian-construction system for refinement of the design of structures. The design of a tuned mass dampers for the reduction of pedestrian induced vibrations is also explored. Tuned mass dampers are devoted to parametric studies that deal with the influence of design parameters of the damper on the efficiency and design requirements of the device. The aim is to explore the design parameters and their influence on the efficient and economical design of the device. In the thesis were developed two biomechanical models, a simple biomechanical model with one vertical degree of freedom and a bipedal model of a human walking. Models have proven a certain degree of interaction when exciting light footbridges by one pedestrian. Bipedal model then also brought a partial insight into the mechanics of walking and the causes of pedestrian contact forces.
Analysis of dynamical behaviour of slender structures and design of device to reduce vibration
Hanzlík, Tomáš ; Krejsa,, Martin (referee) ; prof. Ing. Alois Materna, CSc., MBA (referee) ; Salajka, Vlastislav (advisor)
Thesis deals with the modeling of pedestrian excitation of structures and obtaining the corresponding dynamic response of the structure. The trend of modern slender structures places more emphasis on the accuracy of modeling pedestrian dynamic excitation, which is difficult because of the intelligent behavior of pedestrians and the biological nature of the modeled pedestrian. First part of the thesis deals with traditional models of pedestrian excitation, based on application of pedestrian ground force to the model of construction. Models are explored on a model of slender footbridge for many different excitation variants in order to explore the specifics of the force excitation application and the structure response calculation. In second part of the thesis biomechanical pedestrian models are developed, including inertial forces, to calculate the pedestrian interaction with the structure. Parametric studies carried out on simplified structural models research the influence of design parameters of biomechanical models on dynamic response. The aim is to obtain a more accurate model of the pedestrian-construction system for refinement of the design of structures. The design of a tuned mass dampers for the reduction of pedestrian induced vibrations is also explored. Tuned mass dampers are devoted to parametric studies that deal with the influence of design parameters of the damper on the efficiency and design requirements of the device. The aim is to explore the design parameters and their influence on the efficient and economical design of the device. In the thesis were developed two biomechanical models, a simple biomechanical model with one vertical degree of freedom and a bipedal model of a human walking. Models have proven a certain degree of interaction when exciting light footbridges by one pedestrian. Bipedal model then also brought a partial insight into the mechanics of walking and the causes of pedestrian contact forces.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.